A Lyapunov approach to Accelerated First Order Optimization In Continuous and Discrete Time
نویسندگان
چکیده
A Lyapunov Approach to Accelerated First-Order Optimization In Continuous and Discrete Time
منابع مشابه
A novel technique for a class of singular boundary value problems
In this paper, Lagrange interpolation in Chebyshev-Gauss-Lobatto nodes is used to develop a procedure for finding discrete and continuous approximate solutions of a singular boundary value problem. At first, a continuous time optimization problem related to the original singular boundary value problem is proposed. Then, using the Chebyshev- Gauss-Lobatto nodes, we convert the continuous time op...
متن کاملContinuous Discrete Variable Optimization of Structures Using Approximation Methods
Optimum design of structures is achieved while the design variables are continuous and discrete. To reduce the computational work involved in the optimization process, all the functions that are expensive to evaluate, are approximated. To approximate these functions, a semi quadratic function is employed. Only the diagonal terms of the Hessian matrix are used and these elements are estimated fr...
متن کاملA Novel Approach to Designing of Chattering-Free Sliding-Mode Control in Second-Order Discrete-Time Systems
In this paper, a chattering-free sliding-mode control is mainly proposed in a second-order discrete-time system. For achieving this purpose, firstly, a suitable control law would be derived by using the discrete-time Lyapunov stability theory and the sliding-mode concept. Then the input constraint is taken into account as a saturation function in the proposed control law. In order to guarantee ...
متن کاملHow to Use MRP in Continuous Production Industries When Order Type is Lot for Lot
The Materials Requirements Planning (MRP) method that is applied in production planning and management has some weaknesses. One of its weaknesses is that the time in MRP method is discrete, and is considered as time period. Hence we are not able to order our requirements at irregular time moments or periods. In this paper, a new form of MRP is introduced that is named Continuous Materials Requi...
متن کاملAccelerated Mirror Descent in Continuous and Discrete Time
We study accelerated mirror descent dynamics in continuous and discrete time. Combining the original continuous-time motivation of mirror descent with a recent ODE interpretation of Nesterov’s accelerated method, we propose a family of continuous-time descent dynamics for convex functions with Lipschitz gradients, such that the solution trajectories converge to the optimum at a O(1/t2) rate. We...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015